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We introduce a new fast summation algorithm which, unlike previ-
ous methods, is not restricted to potential functions. Its asymptotic
complexity is O{nH""}, where n is the number of blobs, H is the
level of refinement, and d'is the domain dimension. For a nonsingu-
lar kernel the complexity reduces to G(n). We present a complete
error and complexity analysis of the algorithm and describe its
impiementation. As an example we use the vortex blob method to
simulate vortex sheet motion in incompressible flow. © 1995 Acs-
demic Press, Inc.

1. INTRODUCTION

Vortex methods have been shown to be a successful approach
for the numerical simufation of incompressible, inviscid fluid
flow. In the vortex blob method introduced by Chorin [8] the
trajectory of a finite number of blobs is approximated by solving
a system of ordinary differential equations

dx(f) .

—d.____ = E W}-Kg(x;(t) - x_,('t))
I =1

- (1.1
x{0) = x{.

Here x{r) = (xI(1),xXr)) € R, i = 1, .., n represent the
positions of the centers of the vortices for which the velocities
are determined using the numerical integration of the Biot—
Savart law, K, is a smooth approximation of the singular kernel
K (K;— K as §— 0}. For smooth flow, theoretical and practical
results state that, under certain assumptions made on &, the
method is stable and convergent with arbitrary high order ac-
curacy.

The straightforward evaluation of the sums in (1.1) for
# values x; require O(n?) computational work per time step.
The purpose of this paper is to introduce a numerical algorithm
which reduces this time complexity to G¢n).

Other methods for reducing the complexity of evaluating simi-

lar sums include the hierarchical solver by Appel [2A], Barnes
and Hut 5], the algorithms based on multipole expansions in
Anderson [2], van Dommelen and Rundensteiner {10], Carrier,
Greengard, and Rokhlin [7], the multigrid solver of Brandt and
Lubrecht [6], the particle-in-cell method introduced by Harlow
[12], and the method of local corrections by Anderson {1].

With the exception of [6], these methods are restricted to
potential-type kernels. What we propose here is a more general
approach, in which high accuracy is achieved by high order
Taylor approximation. A preliminary version of the method for
a singular kernel and a different application was introduced in
[11]. The complexity of the algorithm is O(nF**"), where H is
the level of refinement and 4 is the domain dimension. For a
non-singular kerne! H is constant while in the case of a singular
kernel # = G(log r) under a very weak assumption regarding
the distribution of the points x;.

To illustrate our technique and test the theoretical work and
error estimates we used the vortex sheet model; in incompress-
ible flow this is just a surface across which the tangential fluid
velocity has a jump discontinuity. A vortex sheet can be used,
for example, to model the vorticity shed from an aireraft’s wake
(the time coordinate f represents the aircraft’s line of motion).
The study of the vortex sheet motion then reduces to solving
a set of differential equations (1.1).

We start from the numerical study of the vortex sheet evolution
using desingularized equations as described by Krasny [17]. The
method presented in this paper allows computations with many
more points and over much longer time intervals than were possi-
ble using direct summation. Computations were performed for
times beyond previously achieved; they bring numerical evi-
dence to confirm the convergence of the solutions of the desingu-
larized equation to the actual vortex sheet as the smoothing pa-
rameter & decreases.

The intuitive idea of the fast algorithm is as follows. Suppose
that we need to compute the sums

I
S = D wif (X, %), i=1,..n, (1.2)
=
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where X, are n given points in a domain ¥ C R, d = 1,2, 3,
f:RY X R — R is a given function, and w; € R are some
coefficients. Usually f(x, y) is either singular or very large at
x = y and we will assume it is fast decaying away from the
diagonal (e.g., (3*/9y")f(x, y) = O(|x — y|™)). The computa-
tional domain & is covered by a hierarchy of meshes of height
H. On each mesh cell Tsuch that x & 7, f(x, y) is approximated
by a weighted sum of some functions ¢ ,(y), achieving a “*sepa-
ration”’ of variables:

A(x, )

fx.y) = ;) ForX)$¥), YET.

A natural choice for the approximation is a Taylor expansion
around the center y, of 7;

AlX.7)

fxy)~ 2 F,x)y -y, YET

The above separation of variables is used as follows: for
each x; partition & into a collection F(x;) of mesh cells (at
different levels in the hierarchy) and write (1.2) as

Sx)= D 2 wif(X, X)) (1.3)

TEFx) XEr

The second sum is approximated by

Alx,7)

> wif(x, X)) = 251 w; E Fro (%) (X))

ij'r

Alx, T}

= kZO F(x;) ,;T Wy ¢y (X;)

Alx,7)

= > Fi,(X)Cess
k=0

for some functions F, ; and coefficients ¢; . which do not depend
on X;. The reduction in complexity for the evaluation of sums
(1.3) for i = 1, ..., n is achieved by precomputing c, . for all k
and all possible cells 7.

More precisely, for a problem in d-space, the number of
indices k is G({A?), where A = max, .cgA(X, 7). The number
of cells containing a given point x is H; therefore the precompu-
tation can be done in O{nH A%) time by adding the contribution
of each point to the sum of all cells containing it. The evaluation
of all the sums can then be done in O(nF A¢), where F = max,
card(% (x)). We will show that the cells in F (x) can be chosen
such that both A and F are G(H), thus the total complexity is
O(nH*"). If f is not singular then H is constant and the complex-
ity is @{n). If f is singular on the diagonal then H = Q(log n)
assuming a reasonable distribution of points in & (in a sense

to be made precise later); the complexity is thus G{n log®* n).
In the rest of the paper we will assume that d = 2.

The paper is organized as follows: We start with a brief
overview of the vortex-sheet equations and their desingularized
version in Section 2. The “*direct’” G(n*) discretization method
using the vortex blob technique is then briefly described. Based
on this numerical approach, the implementation and analysis
of the fast summation technique is described in Section 3.
Numerical experiments and comparison with previous results
for the simulated fuselage-flaps configuration [17] are presented
in Section 4. Main results and conclusions are reiterated in
Section 5.

2. THE VORTEX BLOB METHOD FOR VORTEX
SHEET EVOLUTION

2.1, The Vortex Sheet Equations

We will define a vortex sheet by a curve x(I, 1) = (x (T, 1),
x(T, 1)) in R?, where I’ is the circulation parameter and  is
time. The evolution equation is given by

@% - j Kx(T, 1) — x(T, ))al
s l)
Ko =S

Here the Cauchy principal value of the integral is taken. The
initial shape x(I', 0} and the limits of integration depend upon
the problem considered. This equation is a special case of the
Biot-Savart law in which the velocity is expressed as an integral
over vorticity in incompressible flows.

One approach in the computational study of the vortex sheet
evolution is to replace the singular kernel X by the smooth
approximation K, such that K; — K as § — 0. For example,
one can use (cf. [17]),

1
Ks(x) = K(x) M\TXJ-EE

to obtain a desingularized integral and solve the equation

ax(l’ - -
Pl iyt ) = Ko, 1) = x(E, el

Numerical evidence for the convergence of the solution of
this equation to the vortex sheet as § — 0 can be found for
example in [17, 18].

2.2, Approximation Using the Vortex Blob Method

Following [17] we will use the change of variable I' = I'(a),
with 0 = a = #. The condition I'(0) = I'(w) = 0 is imposed
such that the values « = 0, 7 correspond to the wing tips. With
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this change of variable the evolution equation for the sheet
then becomes

M‘%{l = J’: Ks(x(T(a), 1) — x(I'(&), HM (@)da.  (2.1)

The initial condition is given by
x(I'(), 0) = (—cosia), 0)

which coincides with the straight line segment —1 < x =< 1,
x = —cos «. For 0.7 =< |x| < 1 the circulation distribution is
described by

I'(oe) = sin(e),

while in each interval 0 = x| = 0.3 and 0.3 = |x| = 0.7, T
is defined by a cubic polynomial in |x|. The coefficients are
chosen such that I and its derivative with respect to arc length
al'fas (the strength of the vortex sheet) are continuous at
x =0, 0.3, £0.7. The value T = 2 at |x| = 0.3 is a maxi-
mum and ' = 1.4 at x = 0 a local minimum.

The approach we are interested in is the vortex blob approxi-
mation technique cf. [8, 177). There the curve x(T', ) is discret-
ized into a finite number of blebs x,(1), i =1, ., 2N + 1 =
n and a quadrature rule is used for the approximation of the
integral (2.1). The values x;(¢) are approximations to the vortex
sheet’s exact position x(T'(e;), #) at values o; = 7(i — 1)}/2N.
The quadrature we use is the trapezoidal rule with weights w;
= T"a)m/2N, i = 2, .., 2N, and w; = I"(a)m/dN, i = 1,
2N + 1. This yields a system of ordinary differential equations
for the motion of the blobs

O g0

%:(0) = (—cos(@,), 0), 2.2

where

us(x:(1), 1) = ; w K s(x, () — x,(1)) (2.3)

denotes the approximation of the induced velocity at x;(r). The
above systern can be integrated in time using the desired time-
stepping method.

3. THE FAST ALGORITHM

Let ii; be the approximation (to be defined next) to the
velocity usin (2.3) and let %, () be the respective approximations
to the paths x, (¢} defined by

a%;(1)

= ﬁ&(if (I)a t)e

%:(0) = x,(0}.

From now on we will assume ¢ fixed and denote X:(¢) by y;,
i=1,..,n

3.1. Mesh Structure

Assume without 10ss of generality that & is an g X brectangle
of area 1 with @ = b << 2a. We cover & with a hierarchy of
meshes with rectangular cells defined as follows.

Dervirion 3.1 (Cells).  Let M > 1 be a constant and

, 4 8
€= min (a2+b2’4a1+b2)’ G-D
M
H=H(®) = [2 log, 7 ~ log: C ] (3.2)

The choice of these constants are motivated by relation (3.3),
Definition 3.2 and Lemma 3.1 below. The set o of all cells is

a = O'QU U']U...UO'H,

where o, is the set of cells of level k defined recursively as
follows:

k=00 = {9).

k = 1: Two cells in o are obtained by splitting a cell in
ay- into two equal rectangles (the longer side is split in half)
and assigning their common boundary to one of them.

In o, there are 2* cells of area 27%; they are pairwise disjoint
and completely cover ¥. The total number of cells is 27+ — 1.

It is useful to think of the cells as forming a complete binary
tree of height H with & at the root. We will often use the
standard terminology from tree theory and refer to children of
a cell 7 {the two cells into which = is split), the parent of a
cell, etc.

We will denote by 7 an arbitrary cell with center y,, area
A(7) and radius

p(m) = supfly — y.\:y € 7).
With C defined in (3.1) we have
A(t)y = Cp(1) 3.3)

For arbitrary point x and cell 7 defined

dx, ) =Vix—y, [+ &
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For each point x we will partition & into a collection % (x)
of cells (at different levels) as follows.

DerniTioN 3.2 (Domain partition). 1. Set %(x) = J and

T=2%.
2. If 7is empty or 7 contains only x then exit,
3. elseif d(x, 7) = M p(T) then add 7 to F(x),

4. else split 7 into its two children and apply steps 2-4,
recursively, to the children.

Note that a cell 7 € F(x) is not strictly included in (is not
the strict descendant of) any other cell in % (x).

Lemma 3.1.  The partition algorithm is correct, i.e., it will
never attempt to split (in Step 4) a cell in oy (a leaf of the
cells’ tree).

Progf. Let 7 € oy, be a cell which is split in Step 4. 7
failed the test in Step 3; therefore p(1) > d(x, WM > /M.
Using (3.3), A(r) = 27 = Cp(r) > C&/IM,
therefore h << 2 log,(M/8) — log, € = H, ie., T & oy,

3.2. Taylor Approximation

Let € be the desired precision of the fast method relative
to the direct summation. We will fix point x and cell T €
F(x) and let d = d(x, 7) and p = p(7). Recall the definition
of K;:

Y

i(xz -y, —x+y)
2r |x—y|*+ &

Ki(x —y}y=

We will approximate K;(x — y), ¥ € 7, by its Taylor polynomial
of degree A — 1, with A defined later in thas section. The 2D
Taylor expansion of degree A — 1 of f(x, y) = 1/{|x — y|?
+ &%) with respect to y about ¥y, is

f(xs Y) = Pl\-](x’ Y, y:') + RA—l(xs Ys YT)9

where
1
Pt .¥) = 20 i DU Ve (¥ — ¥
= 2 ak(x, yr)(y_yf)ﬁ'
lkj=a-1
Here k = (k!s kz), ik' - k[ + kz, k‘ - k]!kz!, D§ =

a147ayh dyk, y* = yhivk, and the coefficients

1
a(X,¥:) = 35 DY f(X, ¥)y=y,

can be computed using the recurrence

aoo = f
A, = f(2 — v)ay -1, (3.4)
+ 2{uy — Vo) -1 T Qhm2ky — i ky-2s

where f = f(u, v} and a;; = a,;{u, v) for arbitrary u, v. In the
last formula (k,, k;) # (0, 0) and, by convention, a;;= 0if i <
Qorj< 0.

The remainder R, can be bounded as follows: Denoting
(x—y) ¥y - y)d* = aand|y - y.|/d = B we have |a| <
B = p/d = M"' < 1. Using (3.4) we can easily find the
following recurrence formula (R - is defined for convenience)

R, =fxy)
Ro= f(x,y) — f(x,¥)

R.=2aR,_, — B*Ri,, k=1,
with the exact solution
ZA — EA ZA -+ Et\
Ria(x,¥.¥.) = f(x, ¥} ((a - B e )

where
1=a+iVE - ol

But f(x, y)|e — B2 = p/(d*x — y]) fx ¥) = (d — p)
|x — y[)7!, and |z| = p/d; therefore

] s\ (A 1
- = 3 _+— ’
[Ri-i(x, ¥, ¥ x—yl(d) \d d—P)

The right-hand side tends to 0 as A — =, s0 we can
choose A = A(x, 1) to be the smallest positive integer such
that the right-hand side is less than, or equal to, 2&/
Ix — yl|; therefore

2
|Ri-1(%, 3, ¥0) | = |x_f (3.5)

7| .
Let

Ky (x—¥)

(X2— w2, —x2+w)
= Prixyy,
o XY ¥

(3.6)

(X2 — yo —x) ~ 1)
2m

=K;x—y) — Ri(x,v.¥,).
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We will now define the approximation to u; as

0,(x) = > #(x), (3.7)
€F(x)
where
5(x) = 2;, WjKé‘T(x -y
l'j T
= 2_ Wi 2 ak(x' yr)(x; — Y2, T X —+ yjl)(y;‘ — yr)k
Tyer " =a-1
= 2m e, GEYIRAL = B —xALE O, (B8)
and
A= 3wy =y
},'
B; = EE: w;(¥; — ¥ ¥ias (3.9
Yj T
Cr = }EET wi(¥; — ¥-Y ¥
£l

The evaluation of @;(x) reduces thus to the following two
steps:

1. Preprocessing: evaluate the sums (3.9) for all cells +and
indices k.

2. For all cells * € F(x) compute dj(x)} according to (3.8)
and then add them together.

When computing 1i; for all particles x only Step 2 needs to be
repeated n times,

3.3. Formal Description of the Algorithm

The central data structure used in the algorithm is a binary
tree T which will store a subtree {containing the root ¥) of
the complete tree of cells. Initially T is the one node tree
corresponding to ¥. New leaves are added dynamically when-
ever new cells are considered during the domain partitioning
for some point x. Each node has pointers to its parent and
children and space for stering the coefficients A%, B, Ct. To
simplify the presentation, we will assume that we know A =
MaXy e5m A(X, T); therefore the amount of space needed for
each node is statically known {we will show later how to
relax this requirement and make the algorithm work when A
is not known).

Input: n,w,y,j=1,..8 A M

Cutput: next step approximation tiz(x) for all x =
1, ..., n.

Initiglization: Set T to the one node tree corresponding to &.

y_j:.] =

Step 1 (preprocessing, done only once).
Forj =1, ..., n, for all cells T containing y; and for all k =
(his ko) |k = A~ 1, add aly; — yDfto AL es(y; — ¥.0% %
to B, and oy(y; — y.) ¥y to CL.
Step 2 (partition the domain; this and following step are repeated
forx=y,.j=1 ... nk.
Partition & as described in Definition 3.2. Whenever a leaf
of T is split add two new nodes (leaves) to T.
Step 3 (computation).
For all cells 7 € F(x):
1. compute a,(x, y,) according to (3.4) for all &, |k| =
Ax, 1) — 1
2. compute i}(x, t) according to (3.8).
Compute 2 uj(x, t).

€ (x)

End of algorithm.

The correctness and complexity of the algorithm are given
by the following theorem; the proof is presented in the next
two sections.

THEOREM 3.1. For all ¢

L |us(x, ) — Gis(x, )| = &,

2. Evaluation of Gs(x;, 1) for j = 1, ...,
O(n) operations.

n can be done in

3.4. Error Estimates

We will now prove the first part of Theorem 3.1; i.e., we
will show that the fast method is consistent with the vortex
blob method. Using (2.3), (3.7), (3.8), (3.6), and the definition
of w; we obtain

lus(x, 1) — Us(x, 1)]
= Z 2wl | Ksx — ¥) — K3(x — ¥)]
Te#(x) Y€1
1
= 2_ 2 E IWJ‘ ‘X - YJI |R,\_1(X, y_i; yr)!
T3 €7
] r
= > 2T )] [x =yl [ Raci(x, ¥ )1,
R r=%x) y,Er

By the definition of T, |T"(e;)| = 1. Using this fact and (3.5),
we can write

1
|U5(x f)_U§(X I) 52— E 2

— ¥ |Rii (X, ¥, ¥2)

This concludes the proof of the first part of Theorem 3.1.
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3.5. Time Complexity

To prove the second part of Theorem 3.1, we need the follow-
ing lemmas.

Lemma 3.2, max,card(F(x)) = O(H).

Proof. Fix x and let 7 € F(X) of center y, and radius p =
p(1). Let 7' be its parent of center y,.. 7" & F(x); therefore

20> p(T)>MMdX ) >M" |x -y,
>MUx—y|-p)>M " |x—y|-p

Thus
[x — y.| < 3pM.

By (3.3), A(T) = Cp? and the area of {y:|x — y| < 3pM} is
smaller than cp’ for some constant ¢, so there are at most
¢/C cells of given radius p in F(x). There are at most 5 + 1
different possible radii (one for each level in T), which proves
the lemma, ||

Lemma 3.3.  For arbitrary, fixed X, the complexity of the
partition algorithm (Definition 3.2) is O(H?).

Proof.  For each cell included in F(x) the partition algo-
rithm will visit all its ancestors. The only other cells visited
are either empty or contain only x. Their parents must be
ancestors of some cell in %(x); otherwise they would have not
been visited; we can thus bound their number by the number
of ancestors of cells in %(x). The lemma then follows from
the fact that an arbitrary cell has at most H ancestors and,
according to Lemma 3.2, there are O(H) cells in F(x). |

LEmMMa 3.4, A = maX,.esm AX, T} = O(H — log &).

Proof. Fix x, v and let p = p(7) and &€ = p(1)/d(X, T).
From Definition 3.2 we know that

O0<é=M'"<1

We can restate the definition of A = A(x, 7) from Subsection
3.2 as follows: X is the smallest positive integer such that

1—¢ :
A+l
£ = deps— =0 (3.10)

The left-hand side has its maximum at £ = M~ therefore
A = X, where A’ is the smallest positive integer such that
MY = 2ep(M — DIA'M ~ A" + M). It is easy to see that
A" = 0(—log &p).

If 7 € o, then A(7r) = 27* therefore —log p = G(k). But
k = H, which proves the lemma. [

‘We can now compute the complexity of each step of the algo-
rithm.

0.2

-G.a
0.6
osl
b
1.2
1.4
1.9
185 s ] 6.5 © 0.5 1 1.5 =
FIG. 1. The solution obtained using the fast summation is plotted at T =

1, 2,3 and 4, using & = 0.1 and At = 0.02. The number of vortex blobs was
N =40 at T = 0 and reached N = 93] at T = 4. The precision was set to
& = (1,001, The running time at T = 4 was 1735,

Step 1. We find all the cells in T containing y; by moving
down from the root to a leaf. The complexity of this step is
thus G (nH A?).

Step 2. Lemma 3.3 states that the complexity of this step
is G(HY.

Step 3.
G(HAY.

Using Lemma 3.2 the complexity of this step is

The total complexity of the algorithm is the complexity of
Step 1 plus n times the complexity of Steps 2 and 3, ie.,
O(nH(H + A%). Taking into consideration (3.2) and using
Lemma 3.4, this becomes

CG(n(—log )log* & + log’ &)), (3.11)

which is @(n) when & and £ are fixed.
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FIG. 2.

The fast algorithm can also be used, with no changes, for
* singular kernels. Its complexity remains O(nH(H + A%), but
H will be defined differently. Setting § = 0 in the problem
discussed here will make the computations unstable, but for
reasons which have nothing to do with the fast algorithm. In
[11] we discussed a well-posed problem with a singular kernel.

For a singular kernel the algorithm is faster than the direct
summation assuming a reasonable distribution of the points y;,
more precisely:

Assumption 1 (Point distribution). There exists a polyno-
mial P(x) such that any region R C ¥ contains at most
P(n) - area(R) points y;.

This a very weak condition on the distribution of points-—
we do not know any problem which does not satisfy this condi-
tion. (3.2) will be replaced by

-G.2r

-0dr

0.8

0.8+

0.2

04t

0.6

08+

4.3

-1.4r

1.8 L 1 L L

-1.6 -14 12 -1 0.8 6

A closenp view of the solution at T = 3 and T = 4 with § = 0.1 in (a), (b) and 8 = 0.05 in {c). (d).

H = H(n) = [log, P(m)] + 1. (3.12)

Now H = 6(log ) so the complexity of the algorithm becomes
@{n log n(log® n + log” €)).

Taking R = & in the above assumption we see that P(r) = .
From a practical point of view we would like P(n) to be close
to # as this will lower H and, implicitly, the constant in the G
complexity. Definition 3.2 remains correct.

LemmMA 3.5. Under Assumption 1 and with H defined by
(3.12), the partition algorithm will never attemp! to split (in
Step 4) a cell in ay (a leaf of the cells’ tree).

Proof. Let T € oy, be a cell which is split in Step 4. Ac-
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0.51

29

FIG. 3. The solution obtained using the fast summation is plotted at T =
10, L1, and 11.8, using & = 0.1 and Ar = 0.02. The number of vortex blobs
was N = 40 at T = 0 and reached N = 71346 at T = 11.8. The precision
was set to & = 0.001. The total running time at 7 = 11.8 was 18 h 39 min.

cording to the point distribution assumption 7has at most P(n)/
2* points. From Step 2, 7 is also not empty, thus P(n)/2F = 1;
ie,h=log Pmy=H—-1. |

The space complexity of the algorithm is G{nA?) which repre-
sents the space needed for storing the nedes of 7. For a nonsin-
gular kernel this reduces to fi(n) and for a singular kernel to
O(n log® n).

3.6.  Algorithm Details

The value of H given by (3.2) or (3.12) is used only for
proving the time complexity. The implementation does not need
to know the (static) value of H; memory for the nodes of T is
allocated dynamically as the tree grows.

The definition of A is not useful for computing its value.
Fortunately, the algorithm can be easily modified to perform
correctly for any value of A by splitting a cell which would
require a A > A, Its performance will, however, degrade if A
is too small. Our current implementation uses A = 15 for
efficient simulations with up to 100,000 points. Finally, note
that A can be completely eliminated by inplementing the sec-
ond preprocessing optimization discussed below.

For given £ and A, the parameter M controls the balance
between the number of cells in the partition and the degrees
of the Taylor polynomials on these cells. A value close to 1
will decrease the number of cells (by allowing larger cells) but
will increase the degrees A, while a large value will have the
opposite effect. In fact, M is not essential and was introduced
mainly for the sake of clarity and conciseness of the presenta-
tion. Indeed, the correctness of the algorithm (Part 1 of Theorem
3.1) is assured by relation (3.10) for all points x and cells + €
F(x); to prove the time complexity we can either:

1. Bound £ by a constant (M ~'); this is the approach taken
in this paper.

2. Fix A and include T in % (x) iff £ satisfies (3.10); this
method was used in [11].

3. Letboth £ and A vary, subject to (3.10) and try to mini-
mize the computation time. This can be faster than both 1 and
2, but the complexity becomes harder to compute directly.

In our implementation we took the third approach. Specifically,
tfor a given 7, the partition algorithm computes A from (3.10)
and determines the fastest way to compute the interactions of
the points in r by taking the minimum of:

1. the amount of work necessary for computing the Taylor -
approximation as a function of A (a quadratic polynomial in A
whose coefficients can be determined experimentally for each
machine and implementation),

2. The amount of work necessary for summing the interac-
tions of points in 7 directly as a function of the number of these
points (a linear function), and

3. the amount of work necessary assuming we split 7 and
consider its children (computing this exactly would require a
recursive lookup through the entire tree of cells; our implemen-
tation uses some heuristics to estimate this quantity without
having to descend too deeply into the tree).

Note that direct summation in a cell 7 requires knowledge of
all the points in 7. This is achieved by linking all points in 7
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FIG. 4. The structure of the cells used for the fast summation in the computation of the solutions at T = 4 with § = 0.1 and & = 0.05.

into a list; these lists are constructed during the preprocessing
phase for all 7.

There are two optimizations that can make the preprocessing
phase more efficient:

1. The complexity of the preprocessing phase (Step 1)} can

be reduced from G(rH A% to O((n + 27)A?) at the expense of
using more memory. We can write, for example,

A= wily,— ¥ = EE) w,Eﬁ k) Y=y,
j p=

Y€1 yv.Er
(=¥ < wy™
= k! .

The values (—y,¥/r!, w;yi/r! for all r, [r| < A, cells 7, and
points y; can be computed in O((n + 2)A?). We then evaluate
the inside sums first for all leaves and then for all internal
nodes by adding together the sums of the children in a bottom-
up sweep through 7 (there are €(2%) nodes and each one needs
O(AY additions),

2. Alternately, instead of computing (in Step 1) the coeffi-
cients Af, B, C for all cells in T, we can wait until a cell 7is

actually used in a computation for some x and then compute
the coefficients using the list constructed in Step 1. The coeffi-
cients are then stored and need not be recomputed if 7is used
again in a computation for a different point. This optimization
also allows us to compute only as many coefficients as necessary
(A(x, ) instead of A) and, if storage for the coefficients is
allocated dynamically, eliminates the need for choosing a static
value for A.

4. NUMERICAL EXAMPLES

We present here some numerical tests for the problem of
loading of a simulated fuselage-flaps configuration as described
in Section 2.2. This problem has been numerically studied
in detail by Krasny [17] using the vortex blob method. His
calculations showed convergence of this approach with respect
to both mesh refinement and smoothing parameter.

Using the initial data, smoothing parameters and time steps
from [17], the fast method allowed us to duplicate previous
results efficiently, using less CPU time, We were also able
to extend the computations to longer simulation times and
considerable larger number of points. Qur program was written
in C using double precision arithmetic and run on a Sun
Sparc 2 workstation.
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We used the four-step Adams—Bashforth method with time
step At to integrate the two components of the system (2.2).
To overcome the loss of resolution caused by the stretching of
the vortex sheet curve, new points (vortex blobs) are inserted
during computation whenever the distance between adjacent
points becomes too large. We used the cubic point insertion
method described in [17].

Figure 1 shows the vortex sheet evolution at times 7 = 1,
2, 3, 4. The smoothing parameter is § = 0.1 and the time step
is Ar = 0.0125. We started with 40 blobs at 7 = 0 and, using
point insertion, reached 931 blobs at 7 = 4. The running time
at T = 4 (200 time steps) was 173 s.

A closer view of the curve computed with § = 0.1 at T =
3 and 7 = 4 is shown 1n Figs. 2a and b. The closeup of the
solution with & = 0.05, half the previous value, is shown in
Figs. 2c and d. The maximum number of points in the case
reached N = 4522 at T'= 4. Consistent with previous computa-
tions, i can be observed that at a given time each vortex has
more turns as & becomes smaller. :

Figure 3 presents the long time vortex sheet evolution. Due
to the computational expense of direct summation no previous
data exists for these times. The maximum number of points
reached 34908 at T = 10, 53981 at T = 11 and 71346 at T" =
1 1.8, respectively. The total CPU time required for the computa-
tions at time T = 11.8 was 18.6 h. Estimated direct summation,
if feasible, would take approximately one month on the same
machine. The points are plotted on the right half of each figure
and a line interpolating the points is plotted on the left. The
computation becomes unstable at 7 > 11.8 for these particular
values of the parameters &, Af, and &.

A sample of the structure of the domain partition defined by
the fast algorithm is given in Fig. 4. To save time, the program
does not erase the cells created at previous time steps once
they become empty (the cell tree grows monotonically as the
program runs). The cell refinement pictured here thus reflects
the evelution of the vortex sheet in time.

5. CONCLUSIONS

We presented a new version of the fast algorithm for comput-
ing pairwise interactions in a system of r particles first intro-
duced in [11]. The main advantage of the new technique consists
in its versatility: it can be used for any decaying kernel, in both
two- and three-dimensional applications. Moreover, since it is
defined by a Taylor expansion, accuracy and complexity can
be easily studied. We illustrate the use of the new method by

studying vortex sheet rollup using vortex blob approximations.
The tests reproduced previous results obtained vsing direct
summation and extended them to longer simulation times and
larger number of points. We are currently working on a parallel
implementation of the algorithm on a KSR1 machine.
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